Analysis of Multiconductor Transmission Lines, 2E (Wiley by Clayton R. Paul

By Clayton R. Paul

The basic textbook for electric engineering scholars and professionals-now in a useful new editionThe expanding use of high-speed electronic know-how calls for that each one electric engineers have a operating wisdom of transmission strains. notwithstanding, as a result of creation of computing device engineering classes into already-crowded four-year undergraduate courses, the transmission line classes in lots of electric engineering courses were relegated to a senior technical non-obligatory, if provided at all.Now, research of Multiconductor Transmission strains, moment version has been considerably up to date and reorganized to fill the necessity for a established path on transmission strains in a senior undergraduate- or graduate-level electric engineering application. during this new version, every one wide research subject, e.g., per-unit-length parameters, frequency-domain research, time-domain research, and incident box excitation, now has a bankruptcy bearing on two-conductor traces instantly through a bankruptcy on MTLs for that subject. this permits teachers to stress two-conductor strains or MTLs or both.In addition to the reorganization of the fabric, this moment variation now comprises vital developments in research equipment that experience constructed because the earlier version, akin to tools for reaching sign integrity (SI) in high-speed electronic interconnects, the finite-difference, time-domain (FDTD) answer equipment, and the time-domain to frequency-domain transformation (TDFD) process. in addition, the content material of Chapters eight and nine on electronic sign propagation and sign integrity program has been significantly improved upon to mirror the entire important info present and destiny designers of high-speed electronic structures have to know.Complete with an accompanying FTP web site, appendices with descriptions of diverse FORTRAN machine codes that enforce all of the thoughts within the textual content, and a quick yet thorough instructional at the SPICE/PSPICE circuit research software, research of Multiconductor Transmission traces, moment version is an vital textbook for college kids and a useful source for pros.

Show description

Read Online or Download Analysis of Multiconductor Transmission Lines, 2E (Wiley Series in Microwave & Optical Engineering) PDF

Similar analysis books

Tensor analysis

Tensor research is an important software in any technological know-how (e. g. engineering, physics, mathematical biology) that employs a continuum description. This concise textual content bargains a simple remedy of the topic compatible for the coed or working towards engineer. the ultimate bankruptcy introduces the reader to differential geometry, together with the ordinary concept of curves and surfaces.

Calculus - Cálculo con funciones de varias variables y álgebra lineal, con aplicaciones a las ecuaciones diferenciales y a las probabilidades

PRÓLOGO
ÍNDICE ANALÍTICO
1-7 Parte 1. Análisis lineal
····1. ESPACIOS LINEALES
········1. 1 Introducción
········1. 2 Definición de espacio lineal
········1. three Ejemplos de espacios lineales
········1. four Consecuencias elementales de los axiomas
········1. five Ejercicios
········1. 6 Subespacios de un espacio lineal
········1. 7 Conjuntos dependientes e independientes en un espacio lineal
········1. eight Bases y dimensión
········1. nine Componentes
········1. 10 Ejercicios
········1. eleven Productos interiores, espacios euclídeos. Normas
········1. 12 Ortogonalidad en un espacio euclídeo
········1. thirteen Ejercicios
········1. 14 Construcción de conjuntos ortogonales. Método de Gram-Schmidt
········1. 15 Complementos ortogonales. Proyecciones
········1. sixteen Aproximación óptima de elementos de un espacio euclídeo por elementos de un subespacio de dimensión finita
········1. 17 Ejercicios
····2. TRANSFORMACIONES LINEALES Y MATRICES
········2. 1 Transformaciones lineales
········2. 2 Núcleo y recorrido
········2. three Dimensión del núcleo y rango de los angeles transformación
········2. four Ejercicios
········2. five Operaciones algebraicas con transformaciones lineales
········2. 6 Inversas
········2. 7 Transformaciones lineales uno a uno
········2. eight Ejercicios
········2. nine Transformaciones lineales con valores asignados
········2. 10 Representación matricial de las transformaciones lineales
········2. eleven Construcción de una representación matricial en forma diagonal
········2. 12 Ejercicios
········2. thirteen Espacios lineales de matrices
········2. 14 Isomorfismo entre transformaciones lineales y matrices
········2. 15 Multiplicación de matrices
········2. sixteen Ejercicios
········2. 17 Sistemas de ecuaciones lineales
········2. 18 Técnicas de cálculo
········2. 19 Inversas de matrices cuadradas
········2. 20 Ejercicios
········2. 21 Ejercicios varios sobre matrices
····3. DETERMINANTES
········3. 1 Introducción
········3. 2 Justificación de los angeles elección de los axiomas para una función determinante
········3. three Conjunto de axiomas que definen una función determinante
········3. four Cálculo de determinantes
········3. five El teorema de unicidad
········3. 6 Ejercicios
········3. 7 Producto de determinantes
········3. eight Determinante de los angeles matriz inversa de una matriz no singular
········3. nine Determinantes e independencia de vectores
········3. 10 Determinante de una matriz diagonal en bloques
········3. eleven Ejercicios
········3. 12 Fórmulas para desarrollar determinantes. Menores y cofactores
········3. thirteen Existencia de los angeles función determinante
········3. 14 Determinante de una matriz transpuesta
········3. 15 los angeles matriz cofactor
········3. sixteen Regla de Cramer
········3. 17 Ejercicios
····4. AUTOVALORES Y AUTOVECTORES
········4. 1 Transformaciones lineales representadas mediante matrices diagonales
········4. 2 Autovectores y autovalores de una transformación lineal
········4. three Independencia lineal de autovectores correspondientes a autovalores distintos
········4. four Ejercicios
········4. five Caso de dimensión finita. Polinomios característicos
········4. 6 Cálculo de autovalores y autovectores en el caso de dimensión finita
········4. 7 Traza de una matriz
········4. eight Ejercicios
········4. nine Matrices que representan l. a. misma transformación lineal. Matrices lineales
········4. 10 Ejercicios
····5. AUTOVALORES DE OPERADORES EN ESPACIOS EUCLÍDEOS
········5. 1 Autovalores y productos interiores o escalares
········5. 2 Transformaciones hermitianas y hemi-hermitianas
········5. three Autovalores y autovectores de los operadores hermitianos y hemi-hermitianos
········5. four Ortogonalidad de los autovectores correspondientes a autovalores distintos
········5. five Ejercicios
········5. 6 Existencia de un conjunto ortonormal de autovectores para operadores hermitianos y hemi-hermitianos que actúan en espacios de dimensión finita
········5. 7 Representación matricial para operadores hermitianos y hemi-hermitianos
········5. eight Matrices hermitianas y hemi-hermitianas. Matriz adjunta de una matriz
········5. nine Diagonalización de una matriz hermitiana o hemi-hermitiana
········5. 10 Matrices unitarias. Matrices ortogonales
········5. eleven Ejercicios
········5. 12 Formas cuadráticas
········5. thirteen Reducción de una forma cuadrática genuine a forma diagonal
········5. 14 Aplicaciones a l. a. Geometría Analítica
········5. 15 Ejercicios
········*5. sixteen Autovalores de una transformación simétrica obtenidos como valores de su forma cuadrática
········*5. 17 Propiedades relativas a extremos de los autovalores de una transformación simétrica
········*5. 18 Caso de dimensión finita
········5. 19 Transformaciones unitarias
········5. 20 Ejercicios
····6. ECUACIONES DIFERENCIALES LINEALES
········6. 1 Introducción histórica
········6. 2 Revisión de los resultados relativos a las ecuaciones de primer y segundo orden
········6. three Ejercicios
········6. four Ecuaciones diferenciales lineales de orden n
········6. five Teorema de existencia y unicidad
········6. 6 Dimensión del espacio solución de una ecuación lineal homogénea
········6. 7 Álgebra de operadores de coeficientes constantes
········6. eight Determinación de una base de soluciones para ecuaciones lineales con coeficientes constantes por factorización de operadores
········6. nine Ejercicios
········6. 10 Relación entre las ecuaciones homogéneas y no homogéneas
········6. eleven Determinación de una solución specific de los angeles ecuación no homogénea. Método de variación de constantes
········6. 12 No singularidad de los angeles matriz wronskiana de n soluciones independientes de una ecuación lineal homogénea
········6. thirteen Métodos especiales para determinar una solución specific de l. a. ecuación no homogénea. Reducción a un sistema de ecuaciones lineales de primer orden
········6. 14 Método del anulador para determinar una solución specific de los angeles ecuación no homogénea
········6. 15 Ejercicios
········6. sixteen Ejercicios varios sobre ecuaciones diferenciales lineales
········6. 17 Ecuaciones lineales de segundo orden con coeficientes analíticos
········6. 18 l. a. ecuación de Legendre
········6. 19 Polinomios de Legendre
········6. 20 Fórmula de Rodrigues para los polinomios de Legendre
········6. 21 Ejercicios
········6. 22 Método de Frobenius
········6. 23 Ecuación de Bessel
········6. 24 Ejercicios
····7. SISTEMAS DE ECUACIONES DIFERENCIALES
········7. 1 Introducción
········7. 2 Cálculo con funciones matriciales
········7. three sequence de matrices. Normas de matrices
········7. four Ejercicios
········7. five Exponencial de una matriz
········7. 6 Ecuación diferencial que se satisface por eᵗᴬ
········7. 7 Teorema de unicidad para l. a. ecuación diferencial matricial F′(t) = AF(t)
········7. eight Ley de exponentes para exponenciales de matrices
········7. nine Teoremas de existencia y unicidad para sistemas lineales homogéneos con coeficientes constantes
········7. 10 El problema de calcular eᵗᴬ
········7. eleven Teorema de Cayley-Hamilton
········7. 12 Ejercicios
········7. thirteen Método de Putzer para calcular eᵗᴬ
········7. 14 Otros métodos para calcular eᵗᴬ en casos especiales
········7. 15 Ejercicios
········7. sixteen Sistemas lineales no homogéneos con coeficientes constantes
········7. 17 Ejercicios
········7. 18 Sistema lineal normal Y′(t) = P(t)Y(t) + Q(t)
········7. 19 Resolución de sistemas lineales homogéneos mediante sequence de potencias
········7. 20 Ejercicios
········7. 21 Demostración del teorema de existencia por el método de las aproximaciones sucesivas
········7. 22 Aplicación del método de aproximaciones sucesivas a los sistemas no lineales de primer orden
········7. 23 Demostración de un teorema de existencia y unicidad para sistemas no lineales de primer orden
········7. 24 Ejercicios
········*7. 25 Aproximaciones sucesivas y puntos fijos de operadores
········*7. 26 Espacios lineales normados
········*7. 27 Operadores de contracción
········*7. 28 Teorema del punto fijo para operadores de contracción
········*7. 29 Aplicaciones del teorema del punto fijo
8-12 Parte 2. Análisis no lineal
····8. CALCULO DIFERENCIAL EN CAMPOS ESCALARES Y VECTORIALES
········8. 1 Funciones de ℝⁿ en ℝᵐ. Campos escalares y vectoriales
········8. 2 Bolas abiertas y conjuntos abiertos
········8. three Ejercicios
········8. four Límites y continuidad
········8. five Ejercicios
········8. 6 l. a. derivada de un campo escalar respecto a un vector
········8. 7 Derivadas direccionales y derivadas parciales
········8. eight Derivadas parciales de orden superior
········8. nine Ejercicios
········8. 10 Derivadas direccionales y continuidad
········8. eleven los angeles diferencial
········8. 12 Gradiente de un campo escalar
········8. thirteen Condición suficiente de diferenciabilidad
········8. 14 Ejercicios
········8. 15 Regla de l. a. cadena para derivadas de campos escalares
········8. sixteen Aplicaciones geométricas. Conjuntos de nivel. Planos tangentes
········8. 17 Ejercicios
········8. 18 Diferenciales de campos vectoriales
········8. 19 l. a. diferenciabilidad implica los angeles continuidad
········8. 20 los angeles regla de l. a. cadena para diferenciales de campos vectoriales
········8. 21 Forma matricial de los angeles regla de los angeles cadena
········8. 22 Ejercicios
········*8. 23 Condiciones suficientes para l. a. igualdad de las derivadas parciales mixtas
········8. 24 Ejercicios varios
····9. APLICACIONES DE CÁLCULO DIFERENCIAL
········9. 1 Ecuaciones diferenciales en derivadas parciales
········9. 2 Ecuación en derivadas parciales de primer orden con coeficientes constantes
········9. three Ejercicios
········9. four l. a. ecuación de ondas uni-dimensional
········9. five Ejercicios
········9. 6 Derivación de funciones definidas implícitamente
········9. 7 Ejemplos resueltos
········9. eight Ejercicios
········9. nine Máximos, mínimos y puntos de ensilladura
········9. 10 Fórmula de Taylor de segundo orden para campos escalares
········9. eleven Determinación de los angeles naturaleza de un punto estacionario por medio de los autovalores de l. a. matriz hessiana
········9. 12 Criterio de las derivadas segundas para determinar extremos de funciones de dos variables
········9. thirteen Ejercicios
········9. 14 Extremos condicionados. Multiplicadores de Lagrange
········9. 15 Ejercicios
········9. sixteen Teorema del valor extremo para campos escalares continuos
········9. 17 Teorema de l. a. continuidad uniforme para campos escalares continuos
····10. INTEGRALES DE LíNEA
········10. 1 Introducción
········10. 2 Caminos e integrales de línea
········10. three Otras notaciones para las integrales de línea
········10. four Propiedades fundamentales de las integrales de línea
········10. five Ejercicios
········10. 6 El concepto de trabajo como fundamental de línea
········10. 7 Integrales de línea con respecto a l. a. longitud de arco
········10. eight Otras aplicaciones de las integrales de línea
········10. nine Ejercicios
········10. 10 Conjuntos conexos abiertos. Independientes del camino
········10. eleven Segundo teorema basic del cálculo para integrales de línea
········10. 12 Aplicaciones a los angeles Mecánica
········10. thirteen Ejercicios
········10. 14 El primer teorema primary del cálculo para integrales de línea
········10. 15 Condiciones necesarias y suficientes para que un campo vectorial sea un gradiente
········10. sixteen Condiciones necesarias para que un campo vectorial sea un gradiente
········10. 17 Métodos especiales para construir funciones potenciales
········10. 18 Ejercicios
········10. 19 Aplicaciones a las ecuaciones diferenciales exactas de primer orden
········10. 20 Ejercicios
········10. 21 Funciones de potencial en conjuntos convexos
····11. INTEGRALES MÚLTIPLES
········11. 1 Introducción
········11. 2 Particiones de rectángulos. Funciones escalonadas
········11. three crucial doble de una función escalonada
········11. four Definición de quintessential doble de una función definida y acotada en un rectángulo
········11. five Integrales dobles better e inferior
········11. 6 Cálculo de una crucial doble por integración uni-dimensional reiterada
········11. 7 Interpretación geométrica de l. a. vital doble como un volumen
········11. eight Ejemplos resueltos
········11. nine Ejercicios
········11. 10 Integrabilidad de funciones continuas
········11. eleven Integrabilidad de funciones acotadas con discontinuidades
········11. 12 Integrales dobles extendidas a regiones más generales
········11. thirteen Aplicaciones a áreas y volúmenes
········11. 14 Ejemplos resueltos
········11. 15 Ejercicios
········11. sixteen Otras aplicaciones de las integrales dobles
········11. 17 Dos teoremas de Pappus
········11. 18 Ejercicios
········11. 19 Teorema de eco-friendly en el plano
········11. 20 Algunas aplicaciones del teorema de Green
········11. 21 Condición necesaria y suficiente para que un campo vectorial bi-dimensional sea un gradiente
········11. 22 Ejercicios
········*11. 23 Teorema de eco-friendly para regiones múltiplemente conexas
········*11. 24 El número de giros
········*11. 25 Ejercicios
········11. 26 Cambio de variables en una fundamental doble
········11. 27 Casos particulares de l. a. fórmula de transformación
········11. 28 Ejercicios
········11. 29 Demostración de los angeles fórmula de transformación en un caso particular
········11. 30 Demostración de l. a. fórmula de transformación en el caso general
········11. 31 Extensiones a un número mayor de dimensiones
········11. 32 Cambio de variables en una quintessential n-múltiple
········11. 33 Ejemplos resueltos
········11. 34 Ejercicios
····12. INTEGRALES DE SUPERFICIE
········12. 1 Representación paramétrica de una superficie
········12. 2 Producto vectorial fundamental
········12. three El producto vectorial primary, considerado como una basic a los angeles superficie
········12. four Ejercicios
········12. five Área de una superficie paramétrica
········12. 6 Ejercicios
········12. 7 Integrales de superficie
········12. eight Cambio de representación paramétrica
········12. nine Otras notaciones para las integrales de superficie
········12. 10 Ejercicios
········12. eleven Teorema de Stokes
········12. 12 El rotacional y los angeles divergencia de un campo vectorial
········12. thirteen Ejercicios
········12. 14 Otras propiedades del rotacional y de los angeles divergencia
········12. 15 Ejercicios
········*12. sixteen Reconstrucción de un campo vectorial a partir de su rotacional
········*12. 17 Ejercicios
········12. 18 Extensiones del teorema de Stokes
········12. 19 Teorema de l. a. divergencia (teorema de Gauss)
········12. 20 Aplicaciones del teorema de los angeles divergencia
········12. 21 Ejercicios
13-15 Parte three. Temas especiales
····13. FUNCIONES DE CONJUNTO Y PROBABILIDAD ELEMENTAL
········13. 1 Introducción histórica
········13. 2 Funciones de conjunto con aditividad finita
········13. three Medidas con aditividad finita
········13. four Ejercicios
········13. five Definición de probabilidad para espacios muestrales finitos
········13. 6 Terminología propia del cálculo de probabilidades
········13. 7 Ejercicios
········13. eight Ejemplos resueltos
········13. nine Ejercicios
········13. 10 Algunos principios básicos de análisis combinatorio
········13. eleven Ejercicios
········13. 12 Probabilidades condicionadas
········13. thirteen Independencia
········13. 14 Ejercicios
········13. 15 Experimentos o pruebas compuestas
········13. sixteen Pruebas de Bernoulli
········13. 17 Número más possible de éxitos en n pruebas de Bernoulli
········13. 18 Ejercicios
········13. 19 Conjuntos numerables y no numerables
········13. 20 Ejercicios
········13. 21 Definición de probabilidad para espacios muestrales infinitos numerables
········13. 22 Ejercicios
········13. 23 Ejercicios variados sobre probabilidades
····14. CÁLCULO DE PROBABILIDADES
········14. 1 Definición de probabilidad para espacios muestrales no numerables
········14. 2 Numerabilidad del conjunto de puntos con probabilidad positiva
········14. three Variables aleatorias
········14. four Ejercicios
········14. five Funciones de distribución
········14. 6 Discontinuidad de las funciones de distribución
········14. 7 Distribuciones discretas. Funciones de masa de probabilidad
········14. eight Ejercicios
········14. nine Distribuciones continuas. Funciones de densidad
········14. 10 Distribución uniforme sobre un intervalo
········14. eleven Distribución de Cauchy
········14. 12 Ejercicios
········14. thirteen Distribuciones exponenciales
········14. 14 Distribuciones normales
········14. 15 Observaciones sobre distribuciones más generales
········14. sixteen Ejercicios
········14. 17 Distribuciones de funciones de variables aleatorias
········14. 18 Ejercicios
········14. 19 Distribución de variables aleatorias bidimensionales
········14. 20 Distribuciones discretas bidimensionales
········14. 21 Distribuciones continuas bidimensionales. Funciones de densidad
········14. 22 Ejercicios
········14. 23 Distribuciones de funciones de dos variables aleatorias
········14. 24 Ejercicios
········14. 25 Esperanza y varianza
········14. 26 Esperanza de una función de una variable aleatoria
········14. 27 Ejercicios
········14. 28 Desigualdad de Chebyshev
········14. 29 Leyes de los grandes números
········14. 30 El teorema relevant del límite
········14. 31 Ejercicios
········Referencias citadas
····15. INTRODUCCIÓN AL ANÁLISIS NUMÉRICO
········15. 1 Introducción histórica
········15. 2 Aproximaciones por polinomios
········15. three Aproximaciones polinómicas y espacios lineales normados
········15. four Problemas fundamentales en los angeles aproximación por polinomios
········15. five Ejercicios
········15. 6 Polinomios de interpolación
········15. 7 Puntos de interpolación igualmente separados
········15. eight Análisis del errors de l. a. interpolación por polinomios
········15. nine Ejercicios
········15. 10 Fórmula de interpolación de Newton
········15. eleven Puntos de interpolación igualmente separados. El operador de las diferencias sucesivas
········15. 12 Polinomios factoriales
········15. thirteen Ejercicios
········15. 14 Problema de mínimo relativo a los angeles norma del máximo
········15. 15 Polinomios de Chebyshev
········15. sixteen Propiedad de mínimo de los polinomios de Chebyshev
········15. 17 Aplicación a l. a. fórmula del blunders en los angeles interpolación
········15. 18 Ejercicios
········15. 19 Integración aproximada. Regla de los trapecios
········15. 20 Regla de Simpson
········15. 21 Ejercicios
········15. 22 Fórmula de sumación de Euler
········15. 23 Ejercicios
········Referencias citadas
Soluciones a los ejercicios
Índice

Set Theoretical Aspects of Real Analysis (Chapman & Hall/CRC Monographs and Research Notes in Mathematics)

Set Theoretical facets of genuine research is outfitted round a few questions in genuine research and classical degree thought, that are of a collection theoretic style. obtainable to graduate scholars, and researchers the start of the booklet provides introductory issues on genuine research and Lebesgue degree conception.

Extra info for Analysis of Multiconductor Transmission Lines, 2E (Wiley Series in Microwave & Optical Engineering)

Example text

Therefore, Eqs. 4 Illustration of the identity az × (az × Et ) = −Et . 6). This second problem, solving for the scalar potential functions in the transverse plane, depends only on the cross-sectional dimensions of the transmission line. Now let us consider the case where the medium is lossless, that is, σ = 0. In this case, Eqs. 17) Observe that in these solutions, the variables z and t can only appear together as t ± (z/v). The function e+ (t − (z/v)) represents a forward-traveling wave since as t progresses, z must increase to keep the argument constant and track corresponding points on the waveform.

These field vectors are denoted with a t subscript to denote that they lie in the transverse (x–y) plane. It is assumed that the medium is homogeneous, linear, and isotropic and is characterized by the scalar parameters of permittivity ε, permeability µ, and conductivity σ. 3 Illustration of the electromagnetic field structure of the TEM mode of propagation. 1a) is Faraday’s law, and Eq. 1b) is Ampere’s law. 2c) ∇z = az and ax , ay , and az are unit vectors pointing in the appropriate directions.

An example of an ordinary differential equation encountered in lumped-circuit analysis is dV (t) + aV (t) = b sin(ωt) dt CLASSIFICATION OF TRANSMISSION LINES 33 Although the equations to be solved for lumped systems are ordinary differential equations (there is only one independent variable, time t) and are somewhat simpler to solve than the transmission-line equations, which are partial differential equations (since the voltage and current are functions of two independent variables, time t and position along the line z), the type of circuit strongly affects the solution difficulty.

Download PDF sample

Rated 4.97 of 5 – based on 33 votes